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A Two-Armed Bandit Problem 

Let Xi(ti), i = 1, 2, denote two Brownian motions on [0, 1] 
with absorbing end points. 

At any given instant in time, we can run one of the two 
Brownian motions while the other one idles. We can switch 
between them as often as we like. 

The switching process is modeled as an optional increasing 
path: T (t) = (T1(t), T2(t)). 

The Ti’s have appropriate measurability properties and, in addition, T1(t) + T2(t) = t for all t. 

Intuitively, Ti(t) represents the time that process i has “run” over the interval [0, t]. 

Selecting this random time change amounts to determining a control policy for the process. 

Given a payoff function f : [0, 1]2 → IR, the problem is to select a control policy and a stopping 
time so as to maximize the expected reward at the stopping time: 

v(x1, x2) = sup Ex1,x2 f (X1(T1(τ )), X2(T2(τ ))). 
T,τ 

http://www.princeton.edu/~rvdb/tex/talks/SheppFest14/bandits/demo/cBM.mp4
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Optimal Solution 

The value function v is the smallest bi-excessive majorant of f : 

∂2v 
∂x 21 

∂2v 

≤ 0 

≤ 0 
∂x 22 

v ≥ f 

For simplicity, we henceforth assume that f is zero in the interior of the state space and is 
given by nonnegative concave functions on the four sides of the state space. 

With this assumption on f it is easy to see that, given a switching strategy T , the optimal 
stopping time τ is precisely the first exit time from the interior of the state space. 



Larry’s Principle of Smooth Fit 

Assume that the concave functions on the “north” and “east” sides are identically zero. 

Let γ1(x1) denote the nonnegative concave function along the bottom side. 
Let γ2(x2) denote the nonnegative concave function along the left side. 

Thought experiment... 

• Assume that the γi’s are strictly concave. 
• Consider being close to the bottom side. 

• The value function v will equal γ1 at the boundary. 

• If the value function is smooth, then it too will be concave near this lower edge. 

• Hence, the optimal strategy is to control vertically. That is, ∂2v/∂x2
2 = 0. 

• A similar analysis applies to the left hand side. 

• Posit the existance of a curve coming from the lower left corner representing a switch in 
policy. 

• Use the principle of smooth fit to write down differential equation with boundary conditions. 

• Solve the differential equation. 



The Switching Curve 

For any strictly concave function γ, let Γ denote the increasing function given by Z x 

Γ(x) = − uγ 00(u)du. 
0 

The switching curve is given by 
Γ2(x2) = Γ1(x1). 

A similarly explicit formula exists for the value function itself. 

When γ1 = γ2, the switching curve is the diagonal. 
In this case, the switched process involves a local time process on the diagonal. 

In general, the behavior of the optimally controlled process has a general local-time-like behavior 
along the switching curve. 



An Example 
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Red zone: run X2. Blue zone: run X1. 
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A Symmetric Example 
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Concave On All Sides 

Thinking locally about the corners, one might posit that the general solution looks like this 
(or its transpose)... 
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where the switching curves are given by formulae similar to the simple two-sided case. 



But Sometimes... 

The answer (discovered by solving a linear programming problem), looks like this: 
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The central region is an indifference zone—run either Brownian motion. 
The shape of the indifference zone is always rectangular. 



An Example with a Large Indifference Zone 
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The Linear Programming Problem 

ZZ 
minimize v(x1, x2)dx1dx2 

∂2v 
subject to ≤ 0 

∂x2
1 

∂2v ≤ 0 
∂x2

2 

v ≥ f. 

Note: Discretize to make infinite dimensional problem into finite dimensional LP. 

PS. Much faster than value iteration! 



Optimal Switching References 

• Optimal Stopping and Supermartingales over Partially Ordered Sets, 
Mandelbaum and Vanderbei, 
Z. Wahrscheinlichkeitstheorie verw. Gebiete, 57, 253–264, 1981 

• Optimal Switching Between a Pair of Brownian Motions, 
Mandelbaum, Shepp, and Vanderbei, 
Ann. Prob., 18(3), 1010–1033, 1990. 

• Optimal Switching Among Several Brownian Motions, 
Vanderbei, 
SIAM J. on Control and Optimization, 30, 1150–1162, 1992. 

• Brownian Bandits, 
Mandelbaum and Vanderbei, 
Dynkin Festschrift, AMS, 1995 



Theoretical Density (Gaussian) Empirical Density 
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Zeros of Random Polynomials 

Consider a random polynomial: 

nX 
Pn(z) = ηjz

j, z ∈ C, 
j=0 

where η0, . . . , ηn are independent standard normal random variables. 
Let νn(Ω) denote the number of zeros in a set Ω in the complex plane. 

http://www.princeton.edu/~rvdb/JAVA/Roots/Roots.html


Theorem 

For each measurable set Ω ⊂ C, Z Z 
Eνn(Ω) = hn(x, y)dxdy + gn(x)dx, 

Ω Ω∩IR 

where 
¯ ¯B2D0

2 − B0(B1
2 + |A1|2) + B1(A0A1 + A0A1)

hn = ,
π|z|2D3 

0 

and 
)1/2(B0B2 − B1

2 

gn = 
π|z|B0 

and where 
nX 

Bk(z) = jk|z|2j, z ∈ C, k = 0, 1, 2, 
j=0 

nX 
Ak(z) = jk z 2j, z ∈ C, k = 0, 1, 

j=0 

and q 
D0(z) = B0

2(z) − |A0|2(z). 



Main Idea 

From the argument principle, we get Z 
1 P n 

0 (z)
νn(Ω) = dz. 

2πi ∂Ω Pn(z) 

Taking the expectation operator inside the integral, we just need to evaluate the expected value 
of the ratio of two (dependent) Gaussian random variables. 

The rest is tedious (and perhaps nontrivial) algebra. 



Theoretical Density (Gaussian) Empirical Density 
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Larger n 

n = 36 

In the paper, we give an explicit formula for the limit as n →∞. 



Empirical Density Empirical Density Empirical Density 

2.5 2.5 2.5 

-2. -2. -2. 

Cauchy Distribution 

n = 5 n = 10 n = 36 



Zeros of Random Polynomial References 

• The Complex Zeros of Random Polynomials, 
Shepp and Vanderbei 
Transactions of the AMS, 347(11):4365-4384, 1995 



The Dishonest Statistician 

This is the era of Big Data: statistics trumps science. Cause-and-effect is passe. Correlation 
tells all. 

Example: Consider a coin to be used in coin tossing. 
It is important that the coin be fair: p = q = 1/2. 

The coin in question appears to the eye to be perfectly symmetric. Physically, it seems fair 
(and the tosser is a well-respected member of the coin tossing community). 

Such appeals to reason are not sufficient. A statistician has been hired to verify the fairness of 
the coin. 

The statistician embarks on data collection. He instructs the tosser to toss the coin. The 
statistician keeps track of the number of flips, t, and the difference, Xt, between the number 
of heads and tails. 



 

The Dishonest Statistician’s Optimal Stopping Problem 

Unfortunately, unbeknownst others, the statistician is dishonest and has a special interest in 
reporting that the coin is biased in favor of heads. 

The only tool at the statistician’s disposal is to stop the experiment at some point when heads 
outnumbers tails. 

So, the statistician wants to solve an optimal stopping problem: 

v(t, x) = sup Et,x(Xτ /τ ). 
τ≥t 

Of course, the statistician wants to know v(0, 0) but he also wants to know the strategy to 
achieve that “value” and to do that he needs to compute v(t, x) for all t and x. 

Hamilton-Jacobi-Bellman Equation 

! 
v(t, x) = max 

x 
, 

t 
v(t + 1, x + 1) + v(t + 1, x − 1) 

2 
. 



Some Old Papers on the Dishonest Statistician 

• L. Breiman, “Stopping Rule Problems”, Applied Combinatorial Mathematics, 1964. 

– Posed the problem. 

• Y.S. Chow and H. Robbins, “On Optimal Stopping Rules for Sn/n”, Z. Wahrscheilichkeit-
stheorie und Verw. Gebiete, 1963. 

– There exist constants βt such that the optimal stopping rule is to stop the first time 
that Xt ≥ βt. 

• A. Dvoretzky, “Existence and Properties of Certain Optimal Stopping Rules”, Proc. 5th 
Berkeley Symp. Math. Statist. Prob., 1967. 

√ 
– Showed that 0.32 < βt/ t < 4.06. 

• L.A. Shepp, “Explicit Solutions to some Problems of Optimal Stopping”, Annals of Math-
ematical Statistics, 1969. 

– Explicit formula for the limit 
√ 

α := lim βt/ t = 0.83992369506 . . . 
t→∞ 

where Z ∞ 

α = (1 − α2) e λα−λ
2/2dλ 

0 



 

A Few New Papers 

• Luis A. Medina, Doron Zeilberger, 
“An Experimental Mathematics Perspective on the Old, and still Open, Question of When 
To Stop?”, 
in Gems in Experimental Mathematics, AMS Contemporary Mathematics series v. 517, 
265–274 

• O. Häggström and J. Wästlund, 
“Rigorous Computer Analysis of the Chow-Robbins Game”, 
American Mathematical Monthly, 2013. � � � � r ! 

x x 1 π 1 
max , 0 

t 
≤ v(t, x) ≤ max , 0 

t 
+ min 

2 
, 

t |x| 



Stopping Thresholds 
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–Stopping Thresholds Near the Beginning 
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–Stopping Thresholds Log-Log Plot 
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Slightly More Honest Statistician 

Even Number of Tosses Only 

Only allowed to stop after an even number of tosses. 

Modified Bellman equation: ! 
x v(t + 2, x + 2) + 2v(t + 2, x) + v(t + 2, x − 2) 

v(t, x) = max , . 
t 4 



–Stopping Thresholds Even Number of Tosses Only 

0 2 4 6 8 10 12

x 10
4

0

50

100

150

200

250

300

350

tosses

h
e

a
d

 e
x
c
e

s
s

 

 
β

t
 low bound

β
t
 up bound

α t
1/2

0.69730 = pb = (1 + v(0, 0))/2 = 0.69733 



–Stopping Thresholds Even Number of Tosses Only 
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–Stopping Thresholds Even Number of Tosses Only 
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Thank You! 




